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Abstract. Flow of two immiscible, incompressible fluids in a porous medium is typ-
ically described by a nonlinear advection-diffusion equation for one of the fluid satura-
tions. The diffusion coefficient, which represents the effect of capillary forces on the flu-
ids, is zero when the medium is locally saturated by either fluid since in these limiting
cases the effects of capillary forces tend to zero. This degeneracy in the second-order term
usually gives rise to the qualitative property that perturbations in saturation propagate
with finite speed through regions that are fully saturated by either fluid. This qualita-
tive property is physically realistic. In this work we show that, under certain choices of
constitutive relations and modeling approximations, the finite speed of propagation prop-
erty is lost, despite the fact that the diffusion coefficient is degenerate. The loss of fi-
nite speed of propagation is due to unbounded derivatives in the closure relations as the
medium becomes saturated by wetting phase. We present analytical and numerical so-
lutions, compare solution dynamics that display finite and infinite speed of propagation,
and provide a brief account of numerical difficulties related to the degenerate coefficients.

1. Introduction

Models of two-phase flow in porous media are fundamen-
tal tools for understanding subsurface water resources. They
describe soil moisture in the unsaturated zone as well as
transport of industrial solvents in aquifers. Models of two-
phase flow must mimic static and dynamic conditions in
two-phase systems to be useful, whether they are used to
make predictions, to design remediation strategies, or simply
to provide physical intuition. Nevertheless, in representing
nature as a mathematical model, some natural behavior is
lost and some unnatural behavior is gained. In this respect,
good models present acceptable trade-offs between physi-
cal and non-physical behavior. This technical note focuses
on the way perturbations propagate in solutions of certain
two-phase model equations and the consequences of this be-
havior on numerical methods. The more important question
of whether the solution behavior is an acceptable approxi-
mation of nature would need to be addressed by experiments
or deeper theoretical results.

We consider models based on continuum mass balance
equations and the multi-phase extension of Darcy’s law, de-
rived, for example, using the representative elementary vol-
ume approach [Bear , 1972]. The fluids are assumed to be in-
compressible, and the media is assumed to be incompressible
and immobile. This approach results in two conservation
laws relating the saturations of the fluids to the fluid pres-
sure gradients and to the gravitational forces via nonlinear
proportionality constants called the relative permeabilities.
Mathematical closure is obtained by following the approach
outlined in Parker et al. [1987], which uses the capillary
pressure model described in van Genuchten [1980] and the
permeability model described in Mualem [1976]. The result
is a coupled system of second-order quasilinear equations
that are of degenerate parabolic type. That is, except at
two discrete values of saturation, the diffusion coefficients
are strictly positive, and all of the nonlinear coefficients are
at least once differentiable. In one dimension the system
of equations can be reduced further to a single degenerate
parabolic equation. This work focuses strictly on the behav-
ior of the one-dimensional model equation.

The qualitative behavior of solutions of partial differential
equations is particularly important in the case of spatially
variable or nonlinear coefficients, where analytical solutions
are not generally available. When something is known about
the qualitative behavior of solutions, such as a maximum
principle or conservation of mass, these properties can be re-
covered in a discrete sense by carefully designing numerical
methods. Gilding and Kersner [1996] gives a very complete
classification of scalar nonlinear advection-diffusion-reaction
equations in terms of finite speed of propagation, which is a
qualitative property of solutions.

To define the finite speed of propagation property we be-
gin by considering non-negative functions u(x, t) (i.e. solu-
tions of partial differential equations) which are defined on
a half strip (0,∞) × (0, T ]. We define the support of u as

P [t] = {x ∈ (0,∞)|u(x, t) > 0} (1)

and the front or free boundary as

ζ(t) = sup
x∈(0,∞)

P [t] (2)

We say that u has the finite speed of propagation property
if

ζ(t) < ∞ t ∈ [0, τ) (3)

for some τ > 0. That is, if the support of u is bounded ini-
tially then it stays bounded over finite time intervals. The
property is related to the existence of finite or bounded trav-
eling wave solutions of the partial differential equations, as
is shown in Gilding and Kersner [1996]. If u is some mea-
sure of the amount of a substance at location x at time t,
and that substance is merely transported by natural pro-
cesses, then it seems reasonable to require that solutions of
the model equation not cause the substance to occupy an
unbounded region in finite time. Equivalently, we expect
that ζ(t) is always finite. If a column of porous media is
initially saturated with fluid W and another fluid N is in-
jected at the bottom of the column, then the finite speed of
propagation implies that N will not flow out of the top of
the column instantaneously.
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2 KEES: PROPAGATION SPEED IN TWO-PHASE FLOW

The linear advection-diffusion equation does not possess
the finite speed of propagation property: solutions with
bounded initial support are instantaneously positive on the
entire half line. This behavior in the mathematical model is
acceptable in most cases because the solution decays rapidly
enough that it provides a good approximation of nature.
Nonlinear hyperbolic partial equations usually have finite
speed of propagation. On the other hand, nonlinear hy-
perbolic equations have discontinuous solutions, which, al-
though non-physical in many applications, are often good
approximations at the scale of observation. The objective
of this work is to demonstrate a non-physical aspect of so-
lutions of the model equation, which may or may not be an
acceptable approximation to nature, and to examine how
this aspect affects numerical methods.

In section 2 we present the two-phase flow model and
Richards’ equation for air/water systems. We also derive
some asymptotic approximations to the nonlinear parame-
ters that will be used to formulate simplified model equa-
tions and to analyze the speed of propagation. We apply
the results of Gilding and Kersner [1996] to the two-phase
models in section 4 and identify the range of parameters
that lead to infinite speed of propagation. In section 4 we
present analytical solutions of the equations for several spe-
cial cases in order to contrast the behavior of solutions with
and without finite speed of propagation. Finally, in section
5, we describe some simple numerical approaches for solving
the equations and demonstrate additional consequences of
the degenerate form of the equations.

2. Two-Phase Flow Models

In one space dimension, the standard model for incom-
pressible two-phase flow in a homogeneous porous medium
reduces to an equation for the wetting phase saturation s
(c.f. [Chavent and Jaffré, 1986]):

st + [f(s) − d(s)sx]x = 0 (4)

where

d = − ki

ωµw

krwkrn
µn

µw
krw + krn

dpc

ds
(5)

f =
kiµn

ωµw

krw
µn

µw
krw + krn

qt

+
ki

ωµw

krwkrn
µn

µw
krw + krn

(1 − ρn

ρw
)ρwgx (6)

and where ki is intrinsic permeability, ω is porosity, µw is
wetting phase viscosity, µn is non-wetting phase viscosity,
ρw is wetting phase density, ρn is non-wetting phase density,
qt is total fluid velocity, and gx is gravitational acceleration.
The nonlinear constitutive relations are the relative perme-
abilities, krw and krn, and the capillary pressure pc, which
we will specify after considering a related two-phase model.
We will refer to d as the diffusion coefficient and f as the
advective flux.

2.1. Richards’ Equation for Air/Water Systems

Our intention in this section is not to derive Richards’
equation rigorously but rather to clarify how commonly used
forms of Richards’ equation relate to the two-phase model
above. The original derivation of Richards’ equation was
based on physical principles rather than as an approxima-
tion to the two-phase flow model [Richards, 1931]. Starting
from the two-phase flow equation, if we assume ρn/ρw = 0
and µn/µw = 0 we obtain

f =
kikrw

ωµw
ρwgx (7)

d = −kikrw

ωµw

dpc

ds
(8)

The resulting equation is the saturation form of Richards’

equation. Since the density and viscosity of air are in fact

much smaller than those of water, the assumption that

ρn/ρw = 0 and µn/µw = 0 seems like a reasonable approxi-

mation.

2.2. Effective Saturation

Most closure relations for two-phase flow are based on a

reduced or effective saturation defined by

se =
s − sr

ss − sr
(9)

where sr is the residual saturation and ss is the maximum

wetting phase saturation. This reflects the fact that, if only

flow processes are involved, it is usually impossible for either

of the two fluids to be completely removed from the medium

because of entrapment mechanisms. For this work we are in-

terested in what happens when s = ss. For simplicity, we

take ss = 1 and sr = 0 so that se = s.

2.3. Relative Permeability

We will use the wetting phase relative permeability model

derived in Mualem [1976], which was later extended to the

non-wetting phase in Parker et al. [1987]:

krw = s1/2
e

{

∫ se

0
1
pc

dse
∫ 1

0
1
pc

dse

}2

(10)

krn = (1 − se)
1/2

{
∫ 1

se

1
pc

dse

∫ 1

0
1
pc

dse

}2

(11)

The analytical form of these functions depends on the cap-

illary pressure.

2.4. Capillary Pressure

The capillary pressure is expressed as a function of satu-

ration according to the model presented in van Genuchten

[1980]:

pc =
1

α

(

s−1/m
e − 1

)1/n
(12)

where α, n, and m are constants.

2.5. Van Genuchten-Mualem Closure Relations

Following [van Genuchten, 1980], we require that m =

1 − 1/n, so that the integral in the permeability relations

above can be integrated exactly. The resulting closure rela-

tions can be written as

dpc

dse
=

m − 1

mα

(

s−1/m
e − 1

)−m
(s−1/m−1

e ) (13)

krw = s1/2
e

[

1 − (1 − s1/m
e )m

]2
(14)

krn = (1 − se)
1/2(1 − s1/m

e )2m (15)

for se ∈ [0, 1] where 0 < m < 1 and α > 0 are constants.

For notational simplicity we will set α = ω = ki = ρw =

µw = µn = 1, and ρn = 0. Additionally, we consider only

cases with qt = 0 and gx = −1 or 0. The case with gx = −1

is called gravity segregation or counter-current flow, since
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Figure 1. Advective flux, f , versus saturation, s, for
two-phase flow. For all m, f(0) = f(1) = 0. For small

m, df
ds

(1) = ∞. Consequently, f is not Lipschitz contin-
uous at s = 1 for small m.
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Figure 2. Diffusion coefficient, d, versus saturation, s,
for two-phase flow. For all m, d(0) = d(1) = 0. For

small m, dd
ds

(1) = ∞. Consequently, d is not Lipschitz
continuous at s = 1 for small m.

there is no net movement of the fluid mixture and buoy-
ancy and capillary pressure are the only driving forces. The
case with gx = 0 is called capillary redistribution. For these
physical constants with gx = −1, the nonlinear coefficients
for two-phase flow are plotted in figures 1 and 2 for large
and small m. The advective flux in figure 1 is zero at se = 0
and se = 1, but it has unbounded slope as se approaches
one. Likewise, the diffusion coefficient in figure 2 is zero at

Table 1. Summary of model parameters for 0 < m < 1

p q b0

Two-phase 3/2 + m 1/2 + 2m -1
Richards 1-m m 1
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Figure 3. advective flux, f , versus saturation, s, for
Richards’ equation. For all m, f(1) = −1, and df

ds
(1) =

−∞. Consequently, f is not Lipschitz continuous at
s = 1.
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Figure 4. Diffusion coefficient, d vs. s for Richards’
Equation. For all m d(1) = ∞ and dd

ds
(1) = ∞. Thus, d

is neither bounded nor Lipschitz continuous with respect
to s.

se = 0 and se = 1, but, for small m, the slope is unbounded

as se approaches one. The coefficients for Richards’ equa-

tion are plotted in figures 3 and 4. The diffusion coefficient

itself is unbounded for Richards’ equation. The advective

flux is finite but has unbounded slope for all values of m as

se approaches 1.

2.6. Asymptotic Approximations

We would like to understand how the unbounded slope

of f and d, as well as the unboundedness of d in Richards’

equation, affect the solution behavior, and the speed of prop-

agation, in particular. Since this behavior occurs only at

se = 1, we will use asymptotic approximations to d and f

near se = 1. For u = 1 − se (i.e., non-wetting phase satura-
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tion) we have as u → 0

dpc

ds
=

m − 1

m

1

m

−m

u−m + o(u−m) (16)

krw = 1 − 2
1

m

m

um + o(um) (17)

krn =
1

m

2m

u
1
2
+2m + o(u

1
2
+2m) (18)

Neglecting constants, we can approximate two-phase flow

with the nonlinearities

d = − ki

ωµw

m − 1

m

1

m

m

u
1
2
+m + o(u

1
2
+m) ≈ u

1
2
+m (19)

f =
ki

ωµw

1

m

2m

u
1
2
+2m(1 − ρn

ρw
)ρwgx + o(u

1
2
+2m)
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Figure 5. First derivative of advective flux, df/dv, ver-
sus transformed variable v for two-phase flow. Note that
df/dv(0) = −1 in agreement with the asymptotic approx-
imation for f(s).
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Figure 6. Diffusion coefficient, d, vs. transformed vari-
able v for Richards’ equation. d is now bounded and
continuous but for m < 1/2 d(0) = 0.

≈ u
1
2
+2m (20)

and Richards’ equation with

d =
ki

ωµw

m − 1

m

1

m

−m

u−m + o(u−m) ≈ u−m (21)

f = − ki

ωµw

(

1 − 2
1

m

m

um
)

ρwgx + o(um)

≈ 1 − um (22)

Making these approximations yields the simple model

ut = (up)xx + b0(u
q)x (23)

where b0 = −1 for two-phase flow and b0 = 1 for Richards’
equation. Note that we have used the Kirchoff transforma-
tion on the diffusion coefficient:

up =

∫ u

0

d(u)du (24)

In terms of the parameter m, the approximate two-phase
flow model has p = 3/2 + m and q = 1/2 + 2m where the
ranges of p and q are 1 < p < 5/2 and 0 < q < 5/2. Thus, f
has infinite slope at s = 1 for m < 1/4, which holds both for
the simplified model and the original two-phase model. The
approximate Richards’ equation has p = 1 − m and q = m
where the range of p and q is 0 < p, q < 1. Thus | df

du
| blows

up faster than d when m < 1/2, and we shall see that the
speed of propagation changes from infinite to finite at this
point. For the van Genuchten parameter n, this corresponds
to the range 1 < n < 2, which is a case studied previously in
the context of numerical approximations Miller et al. [1998].
These relations are summarized in table 1.

2.7. Variable Transformation

The asymptotic approximations above not only yield sim-
plified model equations but also a change of variables for the
original model equations that will yield once-differentiable
coefficients over the entire range of saturations 0 ≤ se ≤ 1.

First, note that if we use the Kirchoff transformation

φ(u) =

∫ u

0

d(u)du (25)

then φ is once differentiable as long as d is continuous. Hence
only in the case of Richards’ equation, where d is unbounded,
must we consider the behavior of d.

For two-phase flow in the case m < 1/4, we will make the
substitution

v =
1

m

2m

u
1
2
+2m (26)

This transformation yields nonlinear coefficients s, f , and
φ that are differentiable in v. Figure 5 shows df/dv. For
m ≥ 1/4 no variable transformation is necessary so we set
v = u.

The variable transformations are slightly more complex
for Richards’ equation. For m ≥ 1/2, d → ∞ and d/| df

du
| →

∞ as u → 0. We design a change of variables v(u) so that
(dpc/ds)(dv/du)(0) = −1. Such a v(u) will yield a diffusion
coefficient that is bounded and continuous and, therefore, a
potential φ that is differentiable and an advective flux that
is zero at u = 0. This consideration leads to

v = mmu1−m (27)

For m < 1/2, d/| df
du

| → 0 as u → 0. Thus, as we did in the
two-phase case, we construct a change of variables so that
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the advective flux is differentiable:

v = 2
1

m

m

um (28)

For the simplified model equation we can use

v = umin(p,q) (29)

These variable transformations do not change the charac-
teristic speeds for the first-order part of the equation, which
are

dx

dt
=

∂f
∂v
∂s
∂v

=
∂f

∂s
(30)

The shock speeds are also unchanged, since for a disconti-
nuity with left state s− = s(v−) and right state s+ = s(v+)
we have

d =
f(s+) − f(s−)

s+ − s−
=

f(u+) − f(u−)

s(u+) − s(u−)
(31)

We make these observations since, in the case of first-order
conservation laws, not all transformations of the equations
yield the same solution in the sense of entropy-satisfying
weak solutions. In such cases two versions of an equation
that are equivalent for classical solutions nevertheless have
shock waves moving at different speeds for the same left
and right states (c.f. [Smoller , 1991]). The simple vari-
able transformations above yield equations with the same
entropy-satisfying weak solutions as the original equation.
On the other hand, the diffusion coefficient (in the sense of
dφ/dv) can change dramatically in the transformed equa-
tion, and the way it changes yields additional insight into
the character of solutions. For Richards’ equation the dif-
fusion coefficient of the transformed equation (m < 1/2) is
now zero at s = 1 (u = 0), as is shown in figure 6.

In the next section we apply the results of Gilding and
Kersner [1996] to characterize the models above with re-
spect to the speed of propagation.

3. Speed of Propagation

3.1. Simple Model

Conveniently, Gilding and Kersner [1996] provide a corol-
lary to their main results which describes the speed of prop-
agation of the simple nonlinear advection-diffusion-reaction
equation

ut = (up)xx + b0u
q
x + c0u

r (32)

over a wide range of values of p, q, r, b0, and c0. The rel-
evant portion of this corollary states that for c0 = 0 and
b0 6= 0, equation 32 has finite speed of propagation if and
only if

1. p > 1 and q ≥ 1, or

2. q < 1, b0 > 0 and p > q
For the simplified two-phase flow model, the first case

holds when m ≥ 1/4 while the second case holds for gx > 0.
Thus the solution will display infinite speed of propagation
when gx = −1 and m < 1/4, in other words, in the counter-
current flow problem when the advective flux has infinite
slope at se = 1. For the simplified Richards’ equation model,
only the second case holds and then only when m < 1/2.

3.2. Two-Phase Flow and Richards’ Equation

Since we are considering the behavior near se = 1 we
consider the equation in terms of u = 1 − se

ut = [a(u)x + b(u)]x (33)

where

a(u) =

∫ u

0

d(1 − w)dw (34)

The formula for d is given by equation 5 or equation 8. For
two-phase flow we have b = f(1−u) where f is given by equa-
tion 6. For Richards’ equation we take b = f(1−u)+1 where
f is given by equation 7. With these definitions equation 33
is equivalent to equation 4 and a(0) = b(0) = 0, which is
the form of the equation needed to apply the following two
results from Gilding and Kersner [1996].
Theorem 1 (Gilding and Kersner) The equation

ut = [a(u)]xx (35)

displays finite speed of propagation if and only if

∫ δ

0

1

w
da(w) < ∞ for some δ ∈ (0,∞) (36)

where the integral is in the sense of Lebesgue-Stieltjes.
Since a is differentiable on (0, δ), da(w) = d(1 − w)dw. For
two-phase flow we see from equation 19 that equation 36
reduces to

∫ δ

0

Cw
1
2
+m + o(w

1
2
+m)

w
dw < ∞ ∀δ > 0 (37)

so that in the case of capillary redistribution two-phase flow
has finite speed of propagation for all m. For Richards’
equation we see from equation 21 that equation 36 reduces
to

∫ δ

0

Cw−m + o(w−m)

w
dw = ∞ ∀δ > 0 (38)

so that in the case of capillary redistribution, Richards’
equation has infinite speed of propagation for all m.

When gx 6= 0 we have
Theorem 2 (Gilding and Kersner) The equation

ut = [a(u)x + b(u)]x = 0 (39)

displays finite speed of propagation if and only if

max {−b(w), 0} = O(w) as w ↓ 0 (40)

and

∫ δ

0

1

max {b(w), w}da(w) < ∞ for some δ ∈ (0,∞) (41)

For two-phase flow we see from equation 20 that equation
40 fails when m < 1/4. When m ≥ 1/4 then equation 41
reduces to equation 37 so that two-phase flow displays finite
speed of propagation in the gravity segregation case if and
only if m ≥ 1/4.

For Richards’ equation, equation 40 holds for 0 < m < 1
while equation 41 reduces to

∫ δ

0

Kw−2m + o(w−2m)dw (42)

Table 2. Summary of Finite Speed of Propagation Results

Capillary Redistribution Gravity Segregation

Two-phase 0 < m < 1 1/4 ≤ m < 1
Richards — 0 < m < 1/2
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Hence Richards’ equation displays finite speed of propaga-
tion in the gravity segregation case if and only if m < 1/2.

These results are in agreement with those for the simple
model and are summarized in table 2.

4. Analytical Solutions

In the following sections we examine solutions with and
without finite speed of propagation by looking at special
solutions.

4.1. First-Order Approximation

First we consider solutions of the first-order approxima-
tion of equation 4

st + fx = 0 (43)

on the spatial domain (−∞,∞) given Riemann initial data,

s(x, 0) =

{

s− for x < 0
s+ for x ≥ 0

(44)

Equation 43 is usually referred to as the Buckley-Leverett
equation when f is given by equation 6. This equation gen-
erally only has weak solutions, which may be discontinuous
and which furthermore are not unique (c.f. [Evans, 1998;
Leveque, 1990]). When the solution fails to be continuous,
a discontinuity with left state s− and right state s+ must
propagate with speed

c =
f(s+) − f(s−)

s+ − s−
(45)

Unique weak solutions can be specified by requiring that
discontinuous solutions be in some sense a limit of solutions
of equation 43 with a second-order regularization term εuxx

(a vanishing viscosity solution). For non-convex f , this re-
quirement can be stated as the Oleinik entropy condition
[Oleinik , 1957] (c.f. [Osher , 1984; Leveque, 1990])

f(s) − f(s−)

s − s−
≥ c ≥ f(s) − f(s+)

s − s+
(46)

for all s between s− and s+. For a general Riemann problem
with s− < s+, the unique solution can be determined from
the convex hull of the set

{(s, y)|s− ≤ s ≤ s+ and y ≥ f(s)} (47)

The convex hull will consist of the graph of f and some set of
chords enclosing regions where f is concave down. A chord
on the boundary of the convex hull represents two values
of the solution connected by a shock wave, and the slope
of the chord is the shock speed c. We are interested in the
counter-current flow problem where s+ = 1. For two-phase
flow we see from figure 1 that the solution will have at least
one shock wave connecting to s+ = 1 and moving to the
right (c > 0) when m is large, specifically when m > 1/4.
On the other hand, when m is small, the solution near s+

will be a rarefaction wave with the value s+ = 1 traveling
at infinite speed to the right. Thus, in this case, the loss
of finite speed of propagation occurs even in the first-order
approximation.

Solutions for s+ = 1 and s− = 0 are given in figure ??
corresponding to each case. As can be seen from figure 3,
Richards equation always has solutions consisting of a single
shock traveling to the left because the flux is convex down
for all m. The solution for s+ = 1 and s− = 0 is simply a
shock wave with c = −1. Although we only consider this
case at length, we can briefly mention a few other cases.
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s e
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Figure 7. Riemann solution for the Buckley-Leverett
equation for the cases m = 5/6 and m = 1/6.

For example, if we consider values of s− close to s+ we can
produce a shock wave moving arbitrarily fast. Furthermore,
if we consider the initial data reversed (also known as capil-
lary rise) we again obtain a rarefaction wave with values of
s− = 1 moving left at infinite speed: the saturated region
desaturates instantaneously.

For completeness we note that the solution in figure ??
was computed automatically by solving the optimization
problem [Osher , 1984]

s(ξ) = argmins∈[s−,s+] [f(s) − ξs] (48)

where ξ = x/t. This formula is a concise statement of the
entropy satisfying weak solution to the Riemann problem
when s+ ≥ s− (a similar formula holds for s+ ≤ s−). This
problem was solved in MATLAB using the fminbnd routine
with tolerances of 1.0e − 5.

4.2. Traveling Wave Solutions

There are two reasons why studying the first-order prob-
lem above is not sufficient for understanding the solution
dynamics of the full second-order model. The first is that a
second-order term can destroy the finite speed of propaga-
tion property. The second is that, even without a first-order
term, the equation can exhibit finite speed of propagation.
In this section we will see how the full second-order model
has finite speed of propagation (in some cases) by examining
traveling wave solutions.

The solutions in the previous section are the unique en-
tropy satisfying weak solutions composed of continuous rar-
efaction waves and discontinuous shock waves. The former
condition arises due to the conservation form of the equa-
tion while the latter can be derived, as mentioned above, by
requiring that any moving discontinuity correspond to trav-
eling wave solutions of a second-order regularization of the
equation. In short, we should already expect that the only
traveling waves that arise in the full model are the shock
waves that arise in the simplified model. In order for the so-
lutions to exhibit finite speed of propagation, the front ζ(t)
must be finite for 0 < t < τ .

To derive traveling wave solutions, we assume that the
solution has the form v(x, t) = v(x − ct) = v(ξ) where c
is the wave speed (to be determined). Using the variable
transformations above, we can consider s,f , and φ to be C1
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functions of v. Making this substitution into Equation 4
yields

−csξ + fξ − φξξ = 0 (49)

Integrating once with respect to ξ and rearranging yields

φξ = −cs(ξ) + f(ξ) + b (50)

where b is the constant of integration. We will enforce the
following asymptotic boundary conditions on equation 50

lim
ξ→±∞

v = v± (51)

lim
ξ→±∞

φξ = 0 (52)

and write f± for f(v±) and s± for s(v±). These boundary
conditions require

lim
v→v±

−cs + f + b = 0 (53)

which implies

b = cs− − f− = cs+ − f+ (54)

From equation 54 we can also determine c

c =
f+ − f−
s+ − s−

(55)

Note that equation 55 is the Rankine-Hugoniot condition.
We will take b = cs+ − f+. The traveling wave equation is
then

φ(v)ξ = f(v) −
{

f+ − f−
s+ − s−

[s(v) − s+] + f+

}

(56)

= h(v−, v+, v) (57)

Equation 56, with boundary conditions given by equations
51 and 52, may not have a solution, and, if it does, solutions
are not unique (if v(ξ) is a solution, then v(C(ξ−ξ0)) is also
a solution). For two-phase flow and Richards’ equation and
the variable transforms we have defined, φ(v) is a monotone
decreasing function of v. Since we consider the case v+ = 0
and 0 < v− < 1, this implies that φ(v−) < φ(v+). The
asymptotic boundary conditions can only be met if h > 0
for v+ ≤ v ≤ v−. The term in braces on the right-hand
side of equation 56 is an expression for the chord connecting
f+ and f−. The requirement that h > 0 can then be inter-
preted as a constraint that the chord connecting f+ and f−

lie below the graph of f(s). Rearranging the requirement
that h > 0 yields half the Oleinik entropy inequality above.
The other half comes from using the second definition of the
constant b above. Thus, the analysis of the first-order case
carries over to the full model in the following way: traveling
wave solutions exist whenever the solution of the Riemann
problem consists of a single shock wave. Traveling wave so-
lutions exist for the two-phase model when m > 1/4 and in
all cases for the Richards’ equation model.

The question of whether the support of v(x, t) has an up-
per bound for t > 0 (i.e., that the solution has finite speed
of propagation) can then be answered by determining when
the solution of equation 56 with initial condition v− > 0
goes to v+ for ξ < ∞. Dividing equation 56 by its (positive)
right hand side and integrating once yields

G(v) =

∫ v

v0

dφ
dv

f(v) − [c(s(v) − s+) − f+]
dv = ξ (58)

where v0 = v(0) can be chosen arbitrarily in (v+, v−). Thus,

if the integral in equation 58 is bounded as v → v+, v(ξ) goes

to v+ in “finite ξ” and the front ζ(t) is given by tG(v+).

Consider first the simplified model problem with u− = 1,

u+ = 0. The integral above is

ξ =

∫ u

u0

pup−1

−b0uq − cu
du (59)

If b0 = −1, p = 1 and q = 2, the simplified model is viscous

Burgers’ equation, and we have

ξ(u) = log(1 − u) − log(u) (60)

Since ξ(u) is unbounded as u → u±, we see that the solu-

tion has infinite speed of propagation. On the other hand,

for p = 2, we have

ξ(u) = 2 log(1 − u) (61)
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Figure 8. Traveling wave solution of the simplified two-
phase flow model.
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Figure 9. Traveling wave solutions of the simplified
Richards’ equation model. Note that the wave speed is
negative, and for m > 1/2 the support is unbounded.
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and therefore ζ(t) = 2t. Note also that dξ
du

= −2/(1 − u)
and therefore −1/2 ≤ du

dξ
≤ 0: solutions are Lipschitz con-

tinuous. For p = 3 we have

ξ(u) = 3(u + log(1 − u)) (62)

so that ζ(t) = 3t and the speed of propagation is again finite.
However dξ

du
= 3[1 − 1/(1 − u)] and therefore du

dξ
→ −∞ as

x → ζ(t): solutions fail to be Lipschitz continuous in space
or time at ζ(t).

For two-phase flow we know q > 1 if m > 1/4, so we can
write the inverse of the solution as

ξ =

∫ u

u0

p

u2−p(uq−1 − 1)
du (63)

Since p > 1 this implies that the front for the traveling wave
solutions to two-phase flow move with finite speed for all
cases with m > 1/4, in agreement with the theory.

For the full two-phase model there is no traveling wave
solution for the case when m ≤ 1/4. For m > 1/4 the travel-
ing wave solution is bounded, and for m > 1/2 the derivative
of the solution blows up at the front. We can consider equa-
tions 61 and 62 as approximate models for the behavior of
two-phase flow near s = 1. The traveling wave solution for
m = 3/4 is given in figure 8 (ξ is shifted and scaled).

For Richards’ equation, on the other hand, we have
0 < p, q < 1, p = 1 − q (q = m), and we can see by re-
arranging the integrand of equation 59 as

ξ =

∫ u

u0

p

u2(1−p)(1 − u1−q)
du (64)

=

∫ u

u0

1 − m

u2m(1 − u1−m)
du (65)

that we have infinite speed of propagation when m ≥ 1/2.
When m = 1/2 we have

ξ(u) = log(1 −
√

u) − log(
√

(u)); (66)

When m = 1/4 we have

ξ(u) =
1

2u1/2
+

1

u1/4
− log(u1/4) + log(1 − u1/4) (67)

When m = 3/4 we have

ξ(u) = log(1 − u1/4) − log(u1/2 + u1/4 + 1)/2

+31/2 arctan(1/3(2u1/4 + 1)31/2) (68)

Traveling wave solutions for m = 1/4 and m = 3/4 are given
in figure 9 (ξ is shifted and scaled).

4.3. Barenblatt’s Solution

The traveling waves in the previous section displayed both
finite and infinite speed of propagation. As was seen in the
calculations, the boundedness of the traveling wave depends
mainly on the ratio of diffusion and advection. When ad-
vection is absent, the equation can still have finite speed of
propagation and therefore moving fronts. We now consider
the simplified model given in equation 23 with g = 0 and
qt = 0 (i.e. no advection):

ut − (up)xx = 0 (69)

By seeking a solution of the form u(x, t) = t−αv(xt−β) it
can be shown that a solution on (−∞,∞) is given by (c.f.

[Evans, 1998])

u(x, t) =
1

t
1

p+1

[

b − p − 1

2p(p + 1)

(

x

t
1

p+1

)2
] 1

p−1

|x| < ζ(t)

(70)

for p 6= 1, where b is determined from the particular initial
conditions u(x, 0) = Mδ(x), and where δ is the Dirac delta
function. For p > 1 the front location is given by

ζ(t) =

(

2p(p + 1)

p − 1
b

)1/2

t
1

p+1 (71)

Thus the propagation speed is finite for p > 1, for all t. Note
also that |ut| and |ux| blow up at ζ(t) if p > 2. The case
p > 2 corresponds to two-phase flow with m > 1/2. The
case where p < 1 corresponds to Richards’ equation. Since
in this case p− 1 < 0, we have that ζ = ∞ and the speed of
propagation is infinite (the solution is positive for all x for
t > 0). Graphs of the solution are given in figure 10.

5. Numerical Solutions

We are capable of writing closed-form solutions in only
a few of the instances above. We were able to demonstrate
the effect of infinite speed of propagation in a few special
cases of approximate model equations. To look at the more
general cases we need to use numerical solutions.

We will look at only simple discretization methods here:
forward and backward Euler in time for fixed time step and
central and upwind finite differences in space. For the do-
main [0, 1] × [0, T ] the discrete solution is defined over the
spatial grid xi = ih, i = 0, . . . , n, h = 1/n at discrete times
tj = jk, j = 0, . . . , m, k = T/m. We consider first Dirich-
let boundary conditions s(0) = s(1) = S so that a gen-
eral fully discrete form of the equation is, i = 1, . . . , n − 1,
s = (s0, . . . , sn)

sj
i = sj−1

i +
k

h

{[

φ(s∗i+1) − φ(s∗i )

h
− Fi+1/2(s

∗)

]

−
[

φ(s∗i ) − φ(s∗i−1)

h
− Fi−1/2(s

∗)

]}

(72)
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Figure 10. Barenblatt’s Solution
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First we choose ∗ = n and the numerical flux F as

Fi+1/2(s) =
f(si) + f(si+1)

2
(73)

Consider initial conditions s(x, t) = S+w(x, t) where w(x, t)
is a small perturbation. Linearizations about S are given by

φ(s) ≈ φ(S) +
dφ

ds
(S)(s − S) = φ(S) + D(s − S) (74)

f(s) ≈ f(S) + F (s − S) (75)

where dφ
ds

(S) = D and df
ds

(S) = F . Substituting these
linearizations for the nonlinear coefficients yields the stan-
dard fully discrete linear advection-diffusion equation for
i = 1, . . . , n − 1

sj
i = (Dk

h2 − Fk
2h

)sj−1
i+1 + (1 − 2Dk

h2 )sj−1
i + (Dk

h2 + Fk
2h

)sj−1
i−1

(76)

For periodic boundary conditions the standard Von Neu-
mann stability analysis shows that the method is stable for
time steps k > 0 satisfying (c.f. [Strikwerda, 1989; Hunds-

dorfer and Verwer , 2003])

k ≤ h2

2D
= k0 (77)

If h is then chosen such that

h ≤ 2d

|F | = h0 (78)

then

max
i

|sj
i | ≤ max

i

{

|(Dk

h2
− Fk

2h
)sj−1

i+1 | (79)

+|(1 − 2Dk

h2
)sj−1

i | (80)

+|(Dk

h2
+

Fk

2h
)sj−1

i−1 |
}

(81)

≤ max
i

{

(
Dk

h2
− Fk

2h
)|sj−1

i+1 | (82)

+(1 − 2Dk

h2
)|sj−1

i | (83)

+(
Dk

h2
+

Fk

2h
)|sj−1

i−1 |
}

(84)

≤ max
i

|sj−1
i | (85)

and, therefore, saturations will remain in the physical range
0 ≤ s ≤ 1.

From equations 19–22 we have for two-phase flow

k0 ≈ h2

2u
1
2
+m

(86)

h0 ≈ u
1
2
+m

( 1
2

+ 2m)u2m− 1
2

(87)

and for Richards’ equation

k0 ≈ h2

2u−m
(88)

h0 ≈ u−m

(1 − m)um−1
(89)

which yields the following three cases:

1. (Two-phase Flow) h0 → 0 as S → 1.

2. (Richards’ equation for m ≥ 1/2) k0 → 0 as S → 1
but h0 is bounded away from zero.

3. (Richards’ equation with m < 1/2) h0 → 0 as S → 1.
Since k0 → 0 as h0 → 0 the discretization is essentially

unusable for these model equations. If we use an upwind
advection discretization given by

Fi+1/2(s) =

{

Fsi if F > 0
Fsi+1 if F < 0

(90)

then the discrete maximum principle holds [Strikwerda,
1989] if

2Dk

h2
+

Fk

h
≤ 1 (91)

This condition can be met only in the two-phase flow case
with m ≥ 1/4. We therefore elect to use backward Euler
with upwinding:

sj
i = sj−1

i + Dk
h2 sj

i+1 − ( 2Dk
h2 + Fk

h
)sj

i + (Dk
h2 + Fk

h
)sj

i−1

(92)
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Figure 11. Solutions of the simplified two-phase model
at t = 0.05.
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Taking absolute values and assuming F > 0 yields

(1 +
2Dk

h2
+

Fk

h
)|sj

i | = |sj−1
i +

Dk

h2
sj

i+1 + (
Dk

h2
+

Fk

h
)sj

i−1|

≤ |sj−1
i | + Dk

h2
|sj

i+1| (93)

+(
Dk

h2
+

Fk

h
)|sj

i−1| (94)

Thus we have unconditionally

max
i

|sj
i | ≤ max

i
|sj−1

i | (95)

Since backward Euler is fully implicit, we must solve a sys-
tem of nonlinear algebraic equations at each time step of
the form G(sj) = 0. Standard theories for the convergence
of Newton’s method do not apply when G is not Lipschitz
continuous, which is the case when m < 1/4 for two-phase
flow or m < 1/2 for Richards’ equation [Kelley , 1995; Qi
and Sun, 1993]. We therefore apply the change of variables
as described above to solve the equivalent root-finding prob-
lem G(vj). This equivalent problem is Lipschitz continuous
in v, and, therefore, the convergence theory for non-smooth
Newton methods is applicable.

In computations with the two-phase and Richards’ mod-
els, φ(v) is approximated with a piecewise linear spline. To
compute the spline approximation we set vl = l∆v where
∆v = max v/(ns − 1) and ns is the number of spline knots.
We then set φ0 = 0 and approximate φ recursively as

φl = φl−1 + ∆vd(vl) l = 1, . . . , ns (96)

In the nonlinear context we use the following simple gener-
alization of the upwind formula

Fi+1/2(s) =

{

f(si) if
fi+1−fi

si+1−si
> 0

f(si+1) if
fi+1−fi

si+1−si
< 0

(97)

This flux is not generally appropriate for the first-order ap-
proximation to two-phase flow (Buckley-Leverett), since the
flux is non-convex. It is not entropy satisfying in the case of
transonic rarefaction waves [Leveque, 1990].

The resulting nonlinear system was solved with Newton’s
method to a relative residual tolerance of 10−5. Figures 11–
14 are plots of the solution to the simple model for param-
eters corresponding to two-phase flow and Richards’ equa-
tion. Figures 15–16 are plots of the solution to the two-phase
flow model at t = 0.05 and t = 0.5 m = 1/5 and m = 5/6.
The consequence of infinite speed of propagation is the thin
wedge of saturation that extends all the way to the right
end of the domain as opposed to the sharp moving bound-
ary that forms in the finite-speed case. Similar behavior is
seen in the solutions of Richards’ equation shown in figures
17–18. The sharp boundary traveling to the left in both
two-phase flow and Richards’ equation is a consequence of
finite speed of propagation of wetting phase into non-wetting
phase (the degeneracy at se = 0).

6. Conclusions

We have considered two models of two-phase flow and the
the closure relations presented in Parker et al. [1987], which
are based on the relative permeability model of Mualem
[1976] and the capillary pressure model of van Genuchten
[1980]. For horizontal capillary redistribution (zero grav-
ity and zero total fluid velocity), the full two-phase model
displays finite speed of propagation. Richards’ equation dis-
plays infinite speed of propagation in this case.

For two-phase flow in the case of counter-current flow
with the pore size distribution index m < 1/4 (n < 4/3),
non-wetting phase propagates into wetting phase-saturated

regions with infinite speed. In this case, infinite speed of
propagation is a consequence of the unbounded derivative
of the advective flux. At sw = 1, the diffusion coefficient is
degenerate while the characteristic speeds of the underlying
first-order equation are infinite. A standard upwind advec-
tion discretization with forward Euler time stepping fails to
have a discrete maximum principle in this case, while back-
ward Euler with upwinding has no such requirement.

For Richards’ equation, in the case of counter-current flow
with m < 1/2 (n < 4/3), air propagates with finite speed.
As in the degenerate case of two-phase flow, however, the
standard upwind advection discretization with forward Eu-
ler time stepping fails to have a discrete maximum principle.
Again, the backward Euler method has no such requirement.

Non-Lipschitz continuous closure relations for two-phase
flow and Richards’ equation both cause non-trivial differ-
ences in the qualitative behavior of solutions and in the
difficulty of obtaining numerical solutions. While variable
transformations can be used to derive equivalent models
with smooth coefficients, the most important numerical dif-
ficulties arise from the properties of the solution itself and
are therefore unaffected by the reformulation.

Acknowledgments. This work was supported by the Army
Research Office, grant DAAD19-02-1-0391.

References

Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier.
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Figure 13. Solutions of the simplified Richards’ model
at t = 0.05.
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Figure 14. Solutions of the simplified Richards’ model
at t = 0.5.
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Figure 15. Solutions of the two-phase model for m =
5/6 and m = 1/6 at t = 0.05. The loss of finite speed
of propagation for the m = 1/6 case causes the entire
domain to become unsaturated instantly.
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Figure 16. Solutions of the two-phase model for m =
5/6 and m = 1/6 at t = 0.5.



12 KEES: PROPAGATION SPEED IN TWO-PHASE FLOW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

s e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

v

m=1/6
m=5/6

m=1/6

m=5/6

Figure 17. Solutions of Richards’ equation for m = 5/6
and m = 1/6 at t = 0.05. The loss of finite speed of prop-
agation for the m = 5/6 case causes the entire domain to
become unsaturated instantly.
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Figure 18. Solutions of Richards’ equation for m = 5/6
and m = 1/6 at t = 0.5.


